If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-65=0
a = 6; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·6·(-65)
Δ = 1560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1560}=\sqrt{4*390}=\sqrt{4}*\sqrt{390}=2\sqrt{390}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{390}}{2*6}=\frac{0-2\sqrt{390}}{12} =-\frac{2\sqrt{390}}{12} =-\frac{\sqrt{390}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{390}}{2*6}=\frac{0+2\sqrt{390}}{12} =\frac{2\sqrt{390}}{12} =\frac{\sqrt{390}}{6} $
| C=25(30x+15)+10 | | 36-x=6 | | -18=2+u/4 | | 3x=6=2x | | 5w+77=22 | | 4x+9=6x-27 | | 30-x=50 | | 14–3(x+2)+5x=80 | | -4.42y+0.9=9.070-0.432 | | 4u+3=-17 | | 3x+20=-x+10 | | 10w+8^3=0 | | 2x+(3x-4)=2x-10 | | 135.75=25+8.25w | | -4+14=13x-3-12x | | 2x/5−5/2=x/4+7/2 | | 20+y=84-y | | 19d=13d-16 | | -20=3(u-6)-5u | | X/0.3=x/7 | | -4+2x-5x=17 | | 5.2+(w/4)=-1.2 | | -4+2r-5=17 | | -2(-5x+5)-3x+4=133 | | 1/3=x+-2 | | 2x-3+6x=31 | | 4/5c-1/2=2/7 | | 4x+5=-6x+5 | | 3r/7=6 | | 4(4x-4)+x+4=46 | | 4-6(6c-6)=-2 | | 8−(x−9)=10(x+2) |